A Scalable HardwareArchitecture for Efficient Learning of Recurrent Neural Networks at the Edge

TU/e EINDHOVEN YichengZhang, Manil Dev Gomony, Henk Corporaal, Federico Corradi Eindhoven University of Technology

Abstract

- Motivation for RNN edge learning
- RNN is powerful and compact at the edge for sequential tasks, e.g. speech recognition
- Fine-tuning for personalized data enables better performance
- **Edge learning has advantages in energy** efficiency, latency, and privacy over cloud
- Problem
- traditional Back Propagation Through Time (BPTT) algorithm, demanding in memory and computing resources, hardly fits the edge devices

traditionally in one go: update the weight once by all network state generated after processing the entire sequence

- Our contributions
- devise the routine for the partition based algorithm, Forward Propagation Through Time(FPTT) at the edge to save memory customized Chipyard-based hardware system for the routine to achieve further efficiency and trade-off options

Evolution of Sequential Learning

$$
W_{new} = W_{old} - \eta \frac{\partial \Sigma_{t=1}^{T} l_{(t)}}{\partial W_{old}}
$$

Es	BPTT	FPTT					
Target	$y_{(t-1)}$	$y_{(t)}$	$y_{(t+1)}$	$y_{(t-1)}$	$y_{(t)}$	$y_{(t+1)}$	
Loss	$l_{(t-1)}$	$l_{(t)}$	$l_{(t+1)}$	$l_{(t-1)}$	$l_{(t)}$	$l_{(t+1)}$	
Prediction	$\hat{y}_{(t-1)}$	$\hat{y}_{(t)}$	$\hat{y}_{(t+1)}$	$\hat{y}_{(t-1)}$	$\hat{y}_{(t)}$	$\hat{y}_{(t+1)}$	
Rediction	$\hat{y}_{(t-1)}$	$\hat{y}_{(t)}$	$\hat{y}_{(t+1)}$	$\hat{y}_{(t-1)}$	$\hat{y}_{(t)}$	$\hat{y}_{(t+1)}$	
Rediction	$\hat{y}_{(t-1)}$	$\hat{y}_{(t)}$	$\hat{y}_{(t+1)}$	$\hat{y}_{(t-1)}$	$\hat{y}_{(t)}$	$\hat{y}_{(t+1)}$	
Rediction	\uparrow	\uparrow	\uparrow	\uparrow	\uparrow	\uparrow	\uparrow
Rediction	\uparrow	\uparrow	\uparrow	\uparrow	\uparrow		

\n- Forward Propagation Through Time: update by the current network state after every time step; application of regularization term
$$
R_{(t)}
$$
 for stabilization
\n

$$
W_{(t+1)} = W_{(t)} - \eta \frac{\partial (l_{(t+1)} + R_{(t+1)})}{\partial W_{(t)}} = W_{(t)} - \eta \frac{\partial L_{(t+1)}}{\partial W_{(t)}}
$$

(2) vs FPTT Figure 1. Unrolling of computation graph: BPTT

Memory Saving: memory for the network state can be **released** at every time step (usually use fewer partitions)

Experimental Set-up

Sequential MNIST task, T=784; 4 samples as fine-tuning tiny model at the edge: 128x10 (LSTMxFully Connected) partition the sequence into K parts: 1,2,7,14,28,56

FireSim with AMD UltraScale+ VCU118 for architecture simulation

NVIDIA GPU L4 and V100 for baseline

Customized embedded platform

Two customizations applied:

Figure 2. Chipyard-based System Architecture

Results

Figure 4. Latency and Memory of FPTT benchmarks of six K values on ten architectures (All MS-C are normalized to 500MHz)

Neuromorphic Edge Computing Systems Lab 2024 VLSISOC y.zhang1@student.tue.nl, f.corradi@tue.nl

