
AScalableHardwareArchitecture forEfficient Learningof
RecurrentNeuralNetworks at theEdge

YichengZhang,ManilDevGomony, HenkCorporaal, FedericoCorradi

Eindhoven University of Technology

Abstract

Motivation for RNN edge learning
RNN is powerful and compact at the

edge for sequential tasks, e.g. speech

recognition

Fine-tuning for personalized data

enables better performance

Edge learning has advantages in energy

efficiency, latency, and privacy over

cloud

Problem
traditional Back Propagation Through

Time (BPTT) algorithm, demanding in

memory and computing resources,

hardly fits the edge devices

Our contributions
devise the routine for the partition based

algorithm, Forward Propagation Through

Time(FPTT) at the edge to save memory

customized Chipyard-based hardware

system for the routine to achieve further

efficiency and trade-off options

Evolution of Sequential Learning

traditionally in one go: update the weight once by all network states

generated after processing the entire sequence

Wnew = Wold − η
∂

∑T
t=1 l(t)

∂Wold
(1)

Forward Propagation Through Time: update by the current network

state after every time step; application of regularization term R(t) for

stabilization

W(t+1) = W(t) − η
∂(l(t+1) + R(t+1))

∂W(t)
= W(t) − η

∂L(t+1)

∂W(t)
(2)

Figure 1. Unrolling of computation graph: BPTT

vs FPTT

Memory Saving: memory for the network state can be released at every time step (usually use fewer partitions)

Experimental Set-up

Sequential MNIST task, T=784; 4 samples as fine-tuning

tiny model at the edge: 128x10 (LSTMxFully Connected)

partition the sequence into K parts: 1,2,7,14,28,56

FireSim with AMD UltraScale+ VCU118 for

architecture simulation

NVIDIA GPU L4 and V100 for baseline

Customized embedded platform
Two customizations applied:

1. Compression of Gemmini

global application of Brain

Float 16 (BF16)

halved memory, usage of

Weight Stationary only

2. System Scaling

2 mesh sizes of the

systolic array in Gemmini:

4x4, 8x8

4 types of CPU cores:

1,2,4,8

leads to 8 design points

Figure 2. Chipyard-based System Architecture

Results

Figure 3. Effect of Gemmini Compression

1. Effect of Gemmini compression
Figure 3 shows significant decreases in resource utilization but similar performance in loss

function before and after Gemmini compression.

2. Edge over cloud
For most clusters of K in Figure 4, customized architectures outperform two GPU platforms in

latency.

3. Trade-off in design points
We can observe a trade-off between latency and resource utilization, given any cluster of K in

Figure 4, and figure 5.

4. Degree of partition
For the cluster in Figure 4, a benchmark of larger K, i.e., finer partition over a sequence leads to a

slight latency increase but significant memory saving.

Figure 4. Latency and Memory of FPTT benchmarks of six K values on ten architectures (All MS-C are normalized to 500MHz)

Figure 5. Resource

Utilization of design points

Neuromorphic Edge Computing Systems Lab 2024 VLSISOC y.zhang1@student.tue.nl, f.corradi@tue.nl


