A Scalable Hardware Architecture for Efficient Learning of Recurrent Neural Networks at the Edge

EINDHOVEN UNIVERSITY OF TECHNOLOGY Yicheng Zhang, Manil Dev Gomony, Henk Corporaal, Federico Corradi Eindhoven University of Technology

Abstract

Evolution of Sequential Learning

- Motivation for RNN edge learning
- RNN is powerful and compact at the edge for sequential tasks, e.g. speech recognition
- Fine-tuning for personalized data enables better performance
- Edge learning has advantages in energy efficiency, latency, and privacy over cloud
- Problem

ΤU

 traditional Back Propagation Through Time (BPTT) algorithm, demanding in memory and computing resources, hardly fits the edge devices traditionally in one go: update the weight <u>once</u> by all network states generated after processing the entire sequence

$$W_{new} = W_{old} - \eta \frac{\partial \sum_{t=1}^{T} l_{(t)}}{\partial W_{old}}$$

- BPTT FPTT Target $y_{(t-1)}$ $y_{(t+1)}$ $L_{(t-1)}$ $l_{(t+1)}$ $L_{(t+1)}$ Loss (1) Prediction $\hat{y}_{(t-1)}$ $y_{(t+1)}$ $y_{(t-1)}$ $y_{(t+1)}$ $\rightarrow h_{(t-1)} \rightarrow$ $x_{(t+1)}$
- Figure 1. Unrolling of computation graph: BPTT ₂₎ vs FPTT

Memory Saving: memory for the network state can be released at every time step (usually use fewer partitions)

Forward Propagation Through Time: update by the current network state **after every time step**; application of regularization term
$$R_{(t)}$$
 for stabilization

$$W_{(t+1)} = W_{(t)} - \eta \frac{\partial (l_{(t+1)} + R_{(t+1)})}{\partial W_{(t)}} = W_{(t)} - \eta \frac{\partial L_{(t+1)}}{\partial W_{(t)}}$$

- Our contributions
- devise the routine for the partition based algorithm, Forward Propagation Through Time(FPTT) at the edge to save memory
 customized Chipyard-based hardware system for the routine to achieve further efficiency and trade-off options

Experimental Set-up

Sequential MNIST task, T=784; 4 samples as fine-tuning
tiny model at the edge: 128x10 (LSTMxFully Connected)
partition the sequence into K parts: 1,2,7,14,28,56

 FireSim with AMD UltraScale+ VCU118 for architecture simulation

NVIDIA GPU L4 and V100 for baseline

Customized embedded platform

Two customizations applied:

Figure 2. Chipyard-based System Architecture

Results

80k 60k 40k	LUTS FFS BRAMS [30k -23.3% 70 -55.8% 25k 20k 20k 15k 15k 100	 I. Effect of Gemmini compression Figure 3 shows significant decreases in resource utilization but similar performance in loss function before and after Gemmini compression. 2. Edge over cloud 	LUTs 300k 250k 200k 150k 100k 50k 0
20k	10k 20 5k 10 50 10	 For most clusters of K in Figure 4, customized architectures outperform two GPU platforms in latency. 	FFs
0.20	Loss Function	 3. Trade-off in design points • We can observe a trade-off between latency and resource utilization, given any cluster of K in 	80k 60k 40k 20k 0
0.05	K-001 K-002 K-007 K-014 K-028	4. Degree of partition	200 DSPs
	Figure 3. Effect of Gemmini Compression	 For the cluster in Figure 4, a benchmark of larger K, i.e., finer partition over a sequence leads to a slight latency increase but significant memory saving. 	100

Figure 4. Latency and Memory of FPTT benchmarks of six K values on ten architectures (All MS-C are normalized to 500MHz)

Neuromorphic Edge Computing Systems Lab

2024 VLSISOC

y.zhang1@student.tue.nl, f.corradi@tue.nl