Skip to main content

1. Zhang, Y., Gomony, M. D., Corporaal, H., & Corradi, F. (2024, October). A Scalable Hardware Architecture for Efficient Learning of Recurrent Neural Networks at the Edge. In 2024 IFIP/IEEE 32nd International Conference on Very Large Scale Integration (VLSI-SoC) (pp. 1-4). IEEE. PDF available via IEEE & poster available here!

2. Yin B. & Corradi, F. (2025).  Never Reset Again: A Mathematical Framework for Continual Inference in Recurrent Neural Networks. To appear in Neuro-Inspired Computational Elements (NICE) conference, Heidelberg, March 2025. arXiv preprint arXiv:2412.15983 (2024). PDF available here.

3. Zhang, Y., Yin B., Gomony, M. D., Corporaal, H., Trinitis C. &  Corradi, F. Hardware/Software Co-Design Optimization for Training Recurrent Neural Networks at the Edge. In 2025 Journal of Low-Power Electronics and Applications (JLPEA) 2025, 15, 15. https://doi.org/10.3390/jlpea15010015. PDF available via link (open access)

4. Xun, H., Fieback, M., Yuan, S., Wang, C., Hua, E., Bolzani Poehls, L., Aziza, H., Cantoro, R., Taouil, M. & Hamdioui, S. In-Field Monitoring and Preventing Read Disturb Faults in RRAMs. Accepted at European Test Symposium (ETS), Tallinn, May 2025.

Close Menu

About Salient

The Castle
Unit 345
2500 Castle Dr
Manhattan, NY

T: +216 (0)40 3629 4753
E: hello@themenectar.com